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Abstract-Two different infinite series in one minus the surface emissivity (l-s,)’ are developed for the 
effective emissivity sea of an isothermal semi-infinite slab with an arbitrary void-solid distribution. The 
coefficients for the ith term of each series depend on a single set of i integrals HO, H,, , Hi where H, 
counts the escape path probabilities of an emitted photon with exactly i surface reflections. Rigorous 
complementary upper and lower bounds on E,~ and useful estimates with error bounds can be generated 
after evaluating just the first few i terms of each series. Explicit calculations are given for a model random 
void-solid distribution, a semi-infinite slab cut from a bed of randomly overlapping spheres, and to the 
level HO, H, provide good estimates of .scff for a, > 0.6 for any void fraction. Results are compared to two- 

flux and cell model calculations as well as available experimental data. 

INTRODUCTION 

RADIATION heat transport from a randomly dis- 
tributed solid is generally important at higher tem- 
peratures. For example radiative losses from the exter- 
nal surfaces of porous solid reactants [l] play an 
important role in the high temperature combustion 
wave synthesis of advanced ceramic materials. The 
external circumference of the cylindrical pellets used 
to make silicon nitride may reach 4000°C as the reac- 
tion wave passes. On the other hand, to sustain non- 
catalytic gas-solid reactions such as the reduction of 
ores or the roasting of sulfides requires radiant heat 
transport to the outside surface of the porous reacted 
shell [2]. The contribution of radiative heat flux both 
from the bubble and the emulsion phases must be 
included in the total heat transfer from gas fluidized 
beds. Saxena et al. [3] have pointed out, in their review 
of experimental techniques for the measurement of 
radiative and total heat transfer from high tem- 
perature gas fluidized beds, that appreciable differ- 
ences exist in measured quantities, e.g. the ratio of 
radiant to total energy flux from the fluidized bed, 
whenever a comparison between literature or exper- 
imental sources is possible. A model for the heat trans- 
port processes for any of these systems will require an 
effective surface emissivity E,~ for the porous solid, or 
for the fluidized bed emulsion phase, to prop- 
erly include radiant transport to, or from, the 
surroundings. 

In earlier work Brewster [4,5] derived an expression 
for the effective bed emissivity of an isothermal 

t Author to whom correspondence should be addressed. 

fluidized bed. The radiative transport within the dis- 
persion was represented by the two-flux model. Tien 
and Drolen [6] have pointed out that the two-flux 
model can be inaccurate in any bed of anisotropically 
scattering particles. In addition the bed adsorption 
and scattering coefficients used by Brewster [5] limit 
the application to dilute particle beds. 

Borodulya et al. [7, 81 in their calculation of E,@ for 
an isothermal bed have explicitly included the bed 
structure as a stationary cubic lattice arrangement of 
solid spherical particles. In order to treat a single unit 
cell of the lattice as a closed system, the cell faces that 
cut the void space were assumed to be black, diffusive 
planar surfaces, and approximate network theory [9] 
was used. Vortmeyer [lo] has pointed out, in his 
review of radiation transport models in packed solids, 
that as a result of these approximations cell models 
do not include long range scattering in a rigorous 
manner. Borodulya et al. [7] generated numerical 
values for the effective bed emissivity of both a packed 
and an expanded lattice of spheres, as a function of 
the particle emissivity. 

In addition, Grace [l l] has proposed an empirical 
relationship between the effective emissivity of a 
fluidized bed and the particle emissivity. One diffi- 
culty common to all these previous efforts is the failure 
to obtain a clear, systematic relationship between the 
effective emissivity and bed structure. 

For high temperature transport processes within 
porous solids, there are numerous instances [I, 2, 121 
where the temperature gradients normal to the porous 
solid external surface can be neglected, and the surface 
radiation term is either locally isothermal in the 
differential element or is globally isothermal. In the 
second case of a high temperature fluidized bed, due 
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NOMENCLATURE 

G,, H, ith coefficient of E,, in upper (14) and P> P’ the displacement vector, defined as 
lower (15) bound sums (r/-r) and (r”-r’) 

K(r’, r) d2r local differential view factor d’p slab volume integral element 
between a unit surface at r’ and d’r d’p’ surface area integral element on C, 

Q(.u, y) integral defined in (29b) and (29~) g, total sphere area, overlapped or not, per 
T temperature unit total volume 
a the radius of randomly distributed & an infinite surface area next to the slab 

spheres boundary x = 0 
d’r”’ element of surface area located at r(” on Es void-solid interface surface area 

either X:, or C, 9 void fraction. 
tn average pore diameter 

2’1 the two-step path exclusion volume. 

Subscripts and others 
Greek symbols eff effective 

B the density of sphere centers ext void-solid interface at slab boundary 
8 emissivity I = 0 

y(r) unit normal vector at void-solid int void-solid internal interface 
interface position r into the void ( >I mid point estimates. 

to the high degree of solid particle mixing, an iso- c,~, transport equations must be formulated based on 
thermal bed is often a reasonable first approximation. the microstructure of the void-solid bed. Suppose just 
Indeed, for large particle fluidized beds (diameter > 1 outside the edge at x = 0 of a semi-infinite bed (Fig. 
mm), isothermal conditions are an accurate assump- l(a)), a plane X,, is positioned. and that i is a unit 

tion [ll, 13, 141. In this paper expressions for the vector in the positive x-direction. The bed is divided 
effective emissivity are developed for a void-solid sys- into arbitrary solid and void regions. The void-solid 
tem of arbitrary geometry and a uniform temperature interface X,. between these two regions, includes the 
T,. solid surface at x = 0. 

We will consider the characteristic diameter of the 
solid particles used to construct the voidPsolid dis- 
tribution as sufficiently larger than the wavelength 

of the thermal radiation [9], and the characteristic 
distance between neighboring solid particles as small 
enough [7, 81, that the radiative transfer may be 
regarded as occurring due to multiple optical reflec- 
tions at the void-solid interface. The solid is opaque 
with gray emitting-diffusely reflecting surfaces, a local 
surface emissivity E,, and Kirchoff’s law assumed [9]. 
The void gas is taken to be transparent. 

As we assume X, is an opaque gray diffuse surface, 
the radiation is emitted and reflected diffusely accord- 
ing to Lambert’s cosine law [9]. The emitted radiative 
flux from a unit element of C, depends on the absolute 
temperature T, of the surface, the surface emissivity 
E, and the Stefan-Boltzmann constant g, in the com- 
bination E,oT:. Kirchhoff’s law states that the same 
surface element will absorb only a fraction E, of the 

incident radiation, reflecting the portion (1 --E,). 
The fraction K(r’, r)d*r of the total radiation from 

a unit surface element located at r’ on C,, that travels 

In the next section, two different analytical cum 
simulation expansions for the effective emissivity of a 
semi-infinite bed of arbitrary void-solid geometry are 
derived. When both summation expressions are trunc- 
ated at the same order in the expansion variable 
(I- E,), complementary upper and lower bounds on 
E,~ are generated. Explicit, analytical upper and lower 
bounds on E,~ are calculated in Section 3, for a thick 
bed generated by slicing an infinite plane through 
a bed of randomly placed, freely overlapping solid 
spheres all of the same radius (Fig. 1 (a)). 

FORMULATION OF EQUATIONS 

The effective emissivity is a thermodynamic co- 
efficient that measures the ability of a random sur- 
face to emit or absorb radiation. In order to evaluate 

FIG. 1. (a) Edge of a semi-infinite bed of overlapping spheres : 
(b) exclusion volume U, for a two-step path. 
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a straight line free path, and arrives at a second surface 
element d*r located at r on Z,, can be used to formulate 
the radiant exchange between surfaces. Note the func- 
tion K(r’, r) is also defined when r’ is located at the 
void-solid interface &, but r lies on the plane surface 
X0. Since we are assuming diffuse scattering and emis- 
sion from the void-solid interface, K(r’, r) is given by 
the cosine law 

K(r’, r) = K(r, r’), 

= -h(r) -~lhV) *Akv4) 

(1) 

(if r’ can see r), (2a) 

= 0 (otherwise), (2b) 

where q(r) and q(r’) are unit normals, respectively, at 
r and r’ pointing into the void on & or pointing in 
the i direction on Z,, and p = (r’ - r). 

The portion of the radiation emitted by the bed 
surface YZ,, that finds its way across the plane Z0 before 
reabsorption, can be regarded as the sum of con- 
tributions from all possible paths of photons, that 
begin with emission from a differential element on X,, 
travel a zig-zag path of successive diffuse reflections 
and leave the bed across C,. These possible paths can 
be denumerated by the number i of internal void- 
solid interface diffuse reflections the emitted photon 
makes before exiting. Of the photons emitted from any 
surface element d’r”+‘) at rci+‘) on ES, the fraction 
K(r(‘+ ‘I, rcn) d*r(‘) will travel directly to r(‘) and collide 
within d*r(‘). Of these the portion (1 -E,) will be 
reflected from d*r(‘) and, as the reflection is diffuse, 
the fraction K(r(‘), rci- ‘)) d*r@‘) of these reflected 
photons will arrive at r(‘- ‘) and collide within d*r(‘- ‘) 
and so forth. The photons emitted from d’r(‘+ I), that 
make i successive diffusive reflections from the surface 
elements d*r”‘, d*r”- I) , . , d’r’ on Z,, and travel out 
of the bed across a surface element d*r on C,, make 
a contribution to the total radiation emitted from the 
bed per unit area Z,, of 

(1 --E,)‘H,E,oT~ = (1 -.#Cg’ 
s 

d*r 
=a 

X 5 s d*r . . . d*,.(‘+ 1) 

% ? 

K(r’, r)K(r”, r’) . . K(r(‘+‘), r@))c,oT~, (3) 

where the integrations sum over all possible paths 
with i diffuse reflections that start with emission at 
any r@+ ‘) on Z, and end at any r on X0. Then the total 
radiation emitted from the bed across X0 per unit area 

r=O 

provides an expression for the effective emissivity. 
From the expression (4) with the definition (3) of 

Hi, the first summation form for the effective emiss- 
ivity is 

where 

aefl = f (1 -E&~H~, (5) 
r=O 

H,=X, ‘~od2r~,d2r’...~sd2r”‘)K(r’,r) 

x K(r”, r’) . . . K(r(‘+ I), r(l)). (6) 

Since K(r’, r) d2r is a positive fraction, less than unity, 
and all possible straight line path segments from r’ on 
Xc, will end in either Z, or C,, we have 

s 
K(r’,r) d*r+ 

r, J 
K(r’,r) d*r = 1 (r on C,). (7) 

=o 

From these considerations along with (5) and (6), the 
following properties for Hi are obtained : 

O<Hi<l, i=O,l,..., co, (8) 

HiGHi_,, i=O,l,..., co, (9) 

Ho= 1, (10) 

and H, depends only on the structural properties of 
the void-solid distribution. Note that the inequalities 
(8) and (9) imply the convergence of the series (5). As 
every term in (5) is positive, any truncation of this 
series gives a lower bound on e,e. Hence a, is always 
a zeroth order lower bound on E,~ for any solid struc- 
ture, and including the Ho and H, terms in (5), we 
have the improved first order lower bound 

e,rr > ~,+(l -E&H,. (11) 

A second complementary summation form can be 
obtained by defining Gi 

G,=E, r~0d2r~Sd2r’...~Sd2r(Z) 

X 
s 

d*r(‘+ ‘)K(r’, r)K(r”, r’) . . . K(r(‘+ I), r(‘)) 
=o 

i= 1,2 ,..., co, (12) 

and noting from (6) and (7) that 

Gi=Hi_,-Hi, i=1,2 ,..., co. (13) 

With (13) the summation (5) for the effective emiss- 
ivity can be recast in a second form, 

& eR = H, - 2 (1 -&JiGi. (14) 
i= I 

As Gi from (12) and hence every term (1 - E,)‘G; in the 
series (14) is positive, a truncation at any i value gives 
an upper bound on E,~ reciprocal to (11). In the sense 
that the ith order upper and lower bounds depend on 
the same set of integrals H,, Him ,, . . , Ho they are 
complementary. Hence unity is always a zeroth order 
upper bound for any solid semi-infinite structure, and 
taking only the Ho and G, terms from (14) we have 
the improved first order upper bound 
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&If G 1 -(I -e,)(l --H,). (15) 

Equations (10) and (13) permit both the reciprocal 
bounds (11) and (15) to be written in terms of the 
same path integral H, Values of H, can always bc 
obtained by direct Monte Carlo computation of the 
paths, where only the lowest order two-segment free 
paths need be considered. For some structures ana- 
lytical results are available and, to examine the 
method, analytical reciprocal upper and lower bounds 

on s,s are calculated for a model random porous 
medium in the next section. 

BOUNDS ON ceff FOR A MODEL RANDOM 

BED 

One random geometry that permits an analytical 

formulation of the free paths is obtained when a single 
plane is sliced through an infinite bed of randomly 
placed, freely overlapping solid spheres all of the same 
radius (Fig. l(a)). All those points within the slab 
lying on a sphere surface but not in the interior of 
one or more overlapping spheres, plus the slab edge 
surfaces generated when the solid spheres were cut, 
make up the void-solid interface C,. The points within 
the interior of one or more spheres make up the solid. 
At intermediate void fractions the model porous solid 

appears as ductile spheres that have been compressed 
together under a deformation pressure, or instead a 
porous slab that has been cut from a larger sintered 
block. A bed of randomly overlapping spheres at 
higher sphere center densities (lower void fraction) 
has the required shape irregularities found in some 
porous solids, including surface crevices, branching 
and pore pinching. At lower densities (higher void 
fraction) the randomly placed spheres resemble a 

fluidized, dispersed solid bed. 
The bed is produced by placing N sphere centers, 

totally independently of each other [ 151, into a very 
large volume P”. Solid spheres of radius u arc then 
placed around these centers, and allowed to overlap 
freely. The probability P that a volume 2’ is free of 
sphere centers, after adding N spheres into a large 
volume V, is 

P = [(VPL’)/V]jl. (16) 

Taking the limit of this expression as N and V become 
infinite, we have 

P = exp[-/jr]. (17) 

where the density of sphere centers is defined as 
/J( =N/ V). The event that a point is in the void, 
requires sphere centers be excluded from a spherical 
volume of radius u about the point, and the prob- 

ga = 4xa’fL (19a) 

and from the porosity (IS), the exposed (not ovcr- 
lapped) sphere surface area s per unit total slab 
volume is 

s = 47&/Q. (19b) 

The surface area given by (19) does not include the 
edge surfaces created when the spheres were cut, thcsc 
must be considered separately. The average pore 
diameter m, often used in place of .Y, is defined as four 

times the void volume divided by the internal surface 
area 

(I9c) 

The reciprocal bounds (11) and (15) require the 
evaluation of either H, or G, which are related by 
(10) and (13) 

H, = I-G,. (20) 

From (12), the C, integration of G , can be written as 
a sum of two terms, one that accounts for the cut area 
of the solid spheres C,,, and a second that includes the 
internal void-solid interface area Z,,, of the bed. 

As all radiation that leaves the surface element d’r-’ 
on C,,, must pass across Z,, both the integrals of K 
over & in the first term in (21) arc unity. The area 
X,,, is the solid area of a slab cross-section and 

X d’r”K(r’, r)K(r”. r’) (22) 

where Y& sums over the internal spherical surface 

elements of the semi-infinite slab. 
From equations (2a) and (2b) for the jump prob- 

ability K(r’, r), the integrand of (22) depends on the 
displacement vectors p = r’-r and p’ = r”- r’ ; the 
surface normal q’ located at r’ on X:,,,t; and the fret 
path event that the surface point r’ can see both r and 
r” on C,,. For a fixed p, p’, d’r and d’r”, if d’/) is an 
element of volume in the slab at the tip of 0, then 
o,d’p d’q’/(4n) is the internal area, overlapped or not, 
in d’p with surface unit normal r/’ lying in the solid 
angle element d’rl’. The operation 

ability of finding a point in the void from (17) is 
c,, ’ 

i 
d’r 

f#~ = exp [-4&/I/3]. (18) 18, 

This quantity is also the void fraction or porosity 4. for a fixed p, p’ and 4’ is an average over the entire 

The total sphere area ran, overlapped or not, per unit plane Co, and with the free path event of the integrand, 

total volume is it generates the probability that the points r and r” at 
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the edge of the slab are in the void, that the sphere 
surface point r’ is not overlapped by the other spheres 
of suspension, and that the two-segment free path 
from r to r’ and r’ to r” is free of obstructions. This 
event requires that sphere centers be excluded from 
right circular cylinders of radius a about p and p’, as 
well as spheres of radius a about the base of p and the 
tips of p and p’ (Fig. l(b)). Quite apart from the 
overlapping of the solid spheres, elements of the 
exclusion volume may overlap. Any overlapped vol- 
ume is counted only once, the net exclusion volume 
(Fig. l(b)) is denoted as v, and the free path event 
probability P, given by (17) is 

P, = exp[-/?u,]. (23) 

The vector p runs from a point on the plane Z0 to all 
elements of volume d3p in the slab and the vector p’ 
runs from d3p to all elements of surface d’p’ in the 
plane X0. With these limits for the integral G, and 
using the excluded volume probability (23), we have 

G, = l-~+~~jd3pSdzp’ld’r~4~]-‘~i.~]~~’.~] 

~[np~]-‘[?‘.~‘][i.p’][7t(p’)~]~‘exp[-v,B]. (24a) 

To assure that the sphere, whose surface generates q’, 
will not block the free path, the q’ integration in (24a) 
is over all orientations subject to the conditions 

q’*p<O and rr’+p’>O. (24b) 

As the exclusion volume v, only depends on the two 
path displacement vectors p and p’, the solid angle 
integration d*$, including the inequalities (24b), can 
be performed without an explicit form for ~1, 

s d*q’p*q’p’*$ = $pp’[parccos,u-,/(1--p*)] 

where 

P = P * P’l(PP’). 

G-W 

WI 

The overlap between the two cylinders and the two 
end spherical elements of the exclusion volume (Fig. 
1 (b)) can make v, geometrically complex, but the 
upper and lower limits, 

47ca3 T+g!!+g!z 47za3 
< v, < __ +na*p+na*p , 

3 

(26) 

are always valid. The integrand of (24a) is positive, 
hence insertion of the upper or the lower limit (26) on 
v, into the exponential gives, respectively, lower or 
upper limits on the integral G, 

Z(y) = l-++2+(3&-’ d3p 
s s 

d’p’[i.p][i.p’] 

~[~~‘l~~[~~~cco~~-~J(~-~*)lexp[~(~+p’)~-’l, 

(27) 

where p is given by (25b) 

Z(1) < G, < W/2), (28) 

and m is included from (19a) and (19~). 
After integration over the cylindrical angular coor- 

dinate and the axial component of p across the semi- 
infinite slab, and after several variable substitutions, 
we have 

I(~) = l-4- $ o’ dx s s I 

0 

dy$$!(x,:) 

(294 

2n Q&Y) = s d@arccosp--(l--p*)“*] (29b) 
0 

and 

p = -xy+(l-x*)‘/*(l-y*)‘/*sinO, (29c) 

where (19a) is used to eliminate gS from the integral. 
The complete integrand of equation (29) is smooth 
and bounded. The double integral of (29a) and the 
single integral of (29b) are evaluated numerically 
using the composite, three-point Gaussian quadrature 
method, 

$p(x, y) = -2.2934.. . . 

(30) 

The resulting upper and lower limits from (28) for the 
integral G, are 

l-0.69024 < G, < l-0.3804& (31) 

In turn from the truncated sum (1 l), the lower bound 
on the effective emissivity is 

.sCR > ~,+0.3804~~,(1 -E,) 

and from (15) the complementary upper 
be written either as 

&,e < 1 -(l -E,)(l-0.69024) 

or 

(32) 

bound can 

(33a) 

E,~ i E, + 0.69024( 1 -E,). (33b) 

A major significance of G, is the introduction of an 
explicit void fraction dependence into the effective 
emissivity equations. 

RESULTS AND DISCUSSION 

The two general summation forms are com- 
plementary in the sense, that the values (6) of H,, 

Hi- ,, . , Ho provides from (5), a lower bound on 
the effective emissivity, and the same set of integrals 
through (13) give an equivalent upper bound from 
(14). The integrals Hi are independent of the surface 
properties of the solid and are determined only by the 
microstructure of the void-solid interface. Hi can be 
evaluated from the structure without specifying the 
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particular solid material and E,~ determined once E, is 
available. Two rigorous limits can be obtained from 
the full summation (5) 

and with (10) for a semi-infinite slab 

To our knowledge the relationship of E,~ to struc- 
tural properties (e.g. the void fraction C$ and average 
pore diameter m) for the important case of opaque. 
diffusely reflecting solidPvoid beds at various surface 
emissivities has not yet been systematically addressed 

in the previous theoretical [4, 5, 7, 81 or experimental 
efforts [3, 111. In our calculations the average port 
diameter appears in equation (27), but because the 
slab is semi-infinite it cancels out in (29) and (30) 
upon integration across the slab. For a finite thickness 
L, the pore diameter would enter in the dimensionless 
ratio L/m. In Fig. 2 the lower (32) and upper bounds 
(33) on the effective emissivity of a semi-infinite slab, 

1 , I I I I , I , - 

a.s-----------<;=~.90 

% 

04. _..:- 
02 _:.. w------------------------- E,=O.lO 

LLWW Bound 
01 -_ 

,a, 

FIG. 2. (a) The effective emissivity upper bounds (----). 
(33), lower bounds (- - -), (32), and mid point estimates (’ .), 
(37), for a semi-infinite slab of randomly overlapping solid 
spheres all of the same radius vs the void fraction 4 for 
various values of the void-solid interface emissivity E,; (b) 
maximum percent error bound, 100 x AEON/, , vs surface 
emissivity E, and void fraction C$ for the estimate (Ebb), of 
the effective emissivity of a semi-infinite slab cut from a bed 
of randomly overlapping spheres, (E,~), = F., + (I -E,) x 
(0.3451+0.1902~,)~#~. The error (38) is less than 10% within 
the shaded region, and continuously decreases from 10% at 

the solid curve to zero along either line C$ = 0 or c, = 1. 

cut from a bed of randomly overlapping spheres all 
of the same radius, provides useful information about 
the void fraction and surface emissivity dependence. 
For each surface emissivity value E, shown in Fig. 2(a). 
the effective emissivity solid upper bound, dashed 
lower bound and dotted average mid point curve are 
straight lines with rather mild positive slopes, less 

than 0.7. The complementary upper and lower bounds 
converge in the limit 4 + 0 to the solid surface emiss- 
ivity, at zero porosity the porous material has the 
properties of the nonporous solid. 

A mechanistic explanation for the increase of the 
effective emissivity in Fig. 2(a) with the void fraction 
for 0 < I:, < 1 can be developed from the E,,, sum- 

mation (5) and its path integrals (6). The first term in 
the sum contains the surface emissivity E, and the wall 
to bed view factor H,,. As Ho must be unity for a semi- 
infinite slab of any pore structure. the first term in the 
~,,r sum is E,. The second term includes the integral 
HI. a sum of the differential view factors for all two 
segment radiation paths that begin with emission from 
the bed surface, followed by a single diffuse reflection 
and exit from the bed, multiplied by the cmissivitk 
factor e,( l-c:,). As the void fraction increases from 
zero, Ii, will start at zero and increase as the ncu 
bed void volume generates internal bed surface LX:,:,, 
accessible to the outside edge X, (Fig. 1 (a)) and cor- 
responding new paths. Hence c,,r will increase with (b. 
At higher void fractions. when a particle is removed 
at random, this opens paths so that radiation from 
deeper in the bed can exit, but as the slab is semi- 
infinite, there is no effective decrease in the internal 
surface area of the bed. Note that this may not be the 
cast in an optically thin bed where decrease in surface 
area and deeper accessibility may increase the trans- 
mittance. The higher order terms of series (5) arc all 
positive and the H, behave similarly to N, Both our 
results and those of Borodulya it ~1. [7, 81 sho\v for 
intermediate surface emissivity values, the increase in 
L,.- with void fraction can be signiticant. 

Note for each c, value. the summations (5) and ( 14) 
also provide bounds on cC,r that do not depend on the 
bed microstructure, respectively, a lower bound C, and 
upper bound 1. But these bounds arc clearly not as 
good as those in Fig. 2(a). Grace used the mid point 
estimate from the 1, c, bounds when hc suggested the 
effective emissivity equation 

(i:&l-)o = 0.5(1 +,:,j. (36) 

and compared it to a number of experimental data 
points in the Handbook qf Multiphase Systems [I I]. A 
mid point estimate based on the upper (33) and lower 
bounds (32) in Fig. 2(a), a systematic improvement 
on Grace’s effective emissivity (36). 

(BClf), = 0.5(1 +s,)+O.5(1 -E,) 

x (- 1 +0.6902$+0.3803&J (37) 

is the analytical expression for the mid point dotted 
lines of Fig. 2(a). From the complementary upper and 
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lower bounds, we have in addition an error bound 

AE,rr, 

As,, = (1 -E,)(0.3451-0.1902&,)& (38) 

The bounds (32) and (33) are always valid for a ran- 
domly overlapping sphere bed, however, for certain 
4, and E, values, the estimate of the effective emissivity 
given by (37) is also useful. In Fig. 2(b) a maximum 
percent error bound 100 x A&~~/{&=*) 1 for the estimate 
(c,,), from (37) and (38) is shown for various void 
fractions and surface emissivities. Within the shaded 
region the error is less than 10%. The error con- 
tinuously decreases from 10% at the solid curve, 
across the shaded region, to zero along either edge 
gf)=Oors,= 1. 

From the limit (35), the slope of the effective emiss- 
ivity curve vs the void fraction should be zero for a 
black surface (E, -+ l), and this is the case for the 
bounds in Fig. 2(a) and the effective emissivity equa- 
tion (37). That the slope of the void fraction depen- 
dence of the midpoint average dotted line in Fig. 2(a) 
and equation (37) initially increases with surface 
emissivity decreasing from unity, is also a reasonable 
result for a semi-infinite slab. With a surface emissivity 
less than one, and the additional surface reflections, 
an increasing void fraction will encourage emission 
contributions from surfaces deeper in the bed. But at 
some point the slope must turn around to achieve 
the zero slope predicted by the opposite limit (34) at 
perfect reflection (c, -+ 0). Indeed the slope of the 
lower bound (32) reaches a maximum positive value 
of 0.0951 at .sS = 0.5 and decreases back to zero at 
E, = 0. However, the slope of the upper bound (33) 
continues to increase to a m~imum of 0.6902 at 
E, = 0. This weakness in the upper bound for E, < 0.5, 
and all but smaller values of 4, is the most significant 
reason for the larger errors seen in the unshaded 
bottom region of Fig. 2(b). 

Upper bounds (33) for # = 0.4, 0.70 and C# -+ 1 ; 
lower bounds (32) for # = 0.4 and Q, --+ I; the effective 
emissivity calculated from the two-flux model [4, 5), 
and the effective emissivity results for a cubic lattice 
of spheres obtained from the cell model approxi- 
mation [7, 81 for 4 2 0.95 and C/J = 0.4 are all shown 
for comparison in Fig. 3(a). The cell model, cubic 
lattice dotted curve for d, = 0.4 starts from the origin 
and crosses over the randomly overlapping sphere 
upper bound solid curve for # = 0.4 at E, = 0.13. 
From this E, value on, the cubic lattice effective emiss- 
ivity curve always lies above the random sphere 
bounds. The ordered structure of the cubic lattice 
gives a larger E,@ value due to the open channels that 
allow deeper radiation penetration. Effective emiss- 
ivity values at lower void fractions will be sensitive to 
surface structure. 

At higher void fractions in the random sphere bed, 
sphere overlap becomes unlikely and the randomly 
placed sphere model relates exactly to a gray gas or 
an idealized dilute Ruidized bed of randomly placed 
solid spheres. The edge surface contribution also van- 

ishes. Note that G, was split into an edge surface term 
and an internal surface term, G,“’ for lCint in (21). The 
edge term was shown to be (I -4) and Gi in (22) was 
written as their sum 

G, = (~-c$)+G’;~. (39) 

The edge surface term, bracketed in (39), vanishes as 
Cp -+ 1. However from (27)-(30), Gp is bounded from 
above and below by a finite positive coefficient times 
4. Then G$’ (or at least its lower bound) must increase 
as (f + 1, and the cut sphere edge surfaces vanish from 
both G, and E,= at higher void fraction. At higher void 
fractions our random sphere model is very similar to 
both the expanded cubic lattice for 4 2 0.95 and the 
two-flux sphere bed for d, + 1. Their effective emiss- 
ivity curves are shown on Fig. 3(a) to lie between the 
high void fraction (4 -+ 1) upper (33) and lower (32) 

sum bounds for any value of the solid particle surface 
emissivity. Further in Fig. 3(a), both the expanded 
cubic lattice and two-flux effective emissivity curves 
cross the upper bound solid curve for Q1 = 0.7, in fact 
the former touches the # + 1 upper bound while the 
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FIG. 3. (a) Effective emissivity upper bounds for a semi- 
infinite slab cut from a bed of randomly overlapping spheres 
(33) with Cp = 0.4, 0.7 and 4 --$I ; the corresponding lower 
bounds (32) with # = 0.4 and 4 --i I ; the effective emissivity 
calculated from the two-flux model ; and the effective emiss- 
ivity results for a cubic lattice of spheres obtained from the 
cell model approximation for 4 > 0.95 and C#I = 0.4 vs the 
surface emissivity E,; (b) measured fluidized bed effective 
emissivity values of unknown bed voidage from Grace [l I] 
are compared with greatest upper (33) and least lower (32) 
bounds for a fluid&d bed void fraction range (0.93-0.4). 
The dotted line is from an effective emissivity estimation 

0.5 (1 +E,) suggested by Grace [I 11. 
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latter contacts the 4 = 0.97 upper bound. So they do 
not lie between the bounds (32) and (33) unless the 
void fraction is sufficiently high (4 > 0.97). But this 
is consistent with the fact that the two-flux and 
expanded cubic lattice results in Fig. 3(a) arc 

obtained for very dilute beds, and the truncated sum- 
mation bounds (32) and (33) agree with the effective 
emissivity curves from these two well-known approxi- 
mate methods. 

In Fig. 3(b) some experimental values of the effec- 
tive emissivity for a fluidized bed given by Grace [ 1 I] 
are compared with effective emissivity complementary 
bounds (32) and (33). While in each case the particle 
emissivity is known, no void fraction values were 
given. Using a possible range of void fraction (0.93-m 

0.40) suggested by Borodulya and Kovensky [8] and 
putting aside any differences in structure at lower 4 
due to overlap, we can at least construct a greatest 
effective emissivity upper bound and smallest lower 
bound from these void fractions and see how well they 
do. Grace’s [ 1 I] suggested effective emissivity estimate 
(36), which is also not dependent on structure, is 
included in Fig. 3(b). The data, though rather 
scattered, do lie within the predicted bounds. 

SUMMARY AND CONCLUSIONS 

Two different infinite series in (1 -E,)‘, (5) and (l4), 
are presented for the effective emissivity of an arbi- 
trary isothermal void-solid distribution, e.g. packed 
bed, fluidized bed or porous medium. Note that the 
isothermal condition is not necessarily restrictive 
because the differential volume element in the energy 
transport equations (which must be significantly 

larger than the microstructural scale) is usually 
assumed nearly isothermal in order that the transport 
coefficients can be evaluated at the local temperature. 
Besides c,, the coefficient of the (I -E,)’ term in each 
sum depends on the same set of i integrals H,,, 
H,, , H, defined in (6). The integral H, counts those 

escape probabilities of an emitted photon with exactly 
i surface reflections, and thus brings into E,~, the micro- 
structure of the porous medium or random bed. 

We demonstrate that it is not necessary to evaluate 
the series. Rigorous complementary upper and lower 

bounds on E,,,. and often even a reasonable estimate 

with a built in error bound, can be generated after 
evaluating just the first few i terms of each series. In 
principle the H, integrals can be evaluated in a number 
of different ways, direct simulation, Monte Carlo inte- 
gration of the H, integrals or analytically as we have 
done here. That only the first few i terms and hence 

the least complex paths are needed should shorten any 
of these approaches. 

The method has been examined in the context of a 
model random void-solid distribution, a semi-infnitc 
slab cut from a bed of randomly overlapping spheres. 
Results, which apply in genera1 to a porous medium 
and for higher void fraction to a gray gas, fluidized 
bed, when compared to the two-flux and cell model 
calculations as well as experimental data, are within 
predicted limits. 
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